If it's not what You are looking for type in the equation solver your own equation and let us solve it.
37.19=27t-4.9t^2
We move all terms to the left:
37.19-(27t-4.9t^2)=0
We get rid of parentheses
4.9t^2-27t+37.19=0
a = 4.9; b = -27; c = +37.19;
Δ = b2-4ac
Δ = -272-4·4.9·37.19
Δ = 0.076000000000022
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-\sqrt{0.076000000000022}}{2*4.9}=\frac{27-\sqrt{0.076000000000022}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+\sqrt{0.076000000000022}}{2*4.9}=\frac{27+\sqrt{0.076000000000022}}{9.8} $
| 14x-6=74 | | 4c=c+66 | | -30-5p=7-3(7-p) | | (3x+6)-2x=-(-12)+3x | | 8m-3=7.4 | | 14x-6=75 | | 1/2x-4=x+6 | | 39.2+r=316 | | 5x=(17x-18) | | p=1/4(3)=-5/6 | | .25x+7=17 | | 2x+3-5=7x+7-2x | | -0.2e+5+0.6e=37 | | 3s=s+56 | | 2(C+4)=4(x-2) | | 4.9x^2-20.5x+12=0 | | 2/3x+36=24 | | 6(n+20)=312 | | 6x-3+2x=8x | | 5y-8=12-5y | | 14x=81 | | 5(x+9)=3x+45+2x | | 3(a-6)=2a-(7+a) | | 5y-8=12-8y | | 20z−5−12z=10z+820 | | 14x+16=14x+18 | | -3-2(-3-4b)=11+4b | | 3(z-4)-11=-5(z+4)+6 | | 2(2t-1)=-4-2t | | x+3(x-6)=2(3-x)+3x | | C=80-2u | | |z-3|+|z+3|=|10-3| |